
J .  Fluid Mech. (1965), vol. 21,  part 3, p p .  535-543 

Printed in Great Britain 
535 

A free-streamline solution for stratified flow 
into a line sink 

By TIMOTHY W. KAO 
Department of Engineering Mechanics, 

The University of Michigan* 

(Received 24 March 1964 and in revised form 8 June 1964) 

An analysis is made of the two-dimensional flow under gravity of an inviscid 
non-diffusive stratified fluid into a line sink, involving a velocity discontinuity in 
the flow field. The fluid above the discontinuity is stagnant and hence is not 
drawn into the sink. At sufficiently low values of the modified Froude number, 
this is the only physically possible mode of flow, and is the cause of flow sepa- 
ration in many industrial and natural processes. A proper mathematical solution 
for flows with a stagnant zone has so far been lacking. This paper presents such 
a solution, after posing the problem as one involving a free-streamline, which is 
the line of velocity discontinuity. The solution to be given here is obtained by 
an inverse method. It is also found herein that the modified Froude number 
has a value of 0.345 for all separated flows of the kind in question. 

1. Introduction 
We consider two-dimensional flow of an inviscid density-stratified fluid 

into a line sink in the bottom corner of a channel as shown in figure 1. For values 
of the modified Froude number F (as defined below in equation (14a)) greater 
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FIGURE 1. Flow into a sink. 

than rl, a solution has been given by Yih (1958). However, this solution ceases 
to be valid in the neighbourhood of and below this value of P. It has been demon- 
strated experimentally by Debler (1 959) that, when F is near this critical value, 
the flow is characterized by the presence of a stagnant layer which is separated 
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from the flow region by a line of velocity discontinuity. The proper mathematical 
solution for flow with a stagnant layer has to provide for a velocity discontinuity 
along a streamline in the flow field. This solution has so far been lacking and is 
presented in this paper. In  the problem under consideration, the fluid on one 
side of the discontinuity is required to be stagnant, so that the pressure on the 
dividing streamline is known, although the position of this line is not known a 
priori. Bernoulli's equation is satisfied along the dividing streamline, and this 
provides a non-linear dynamic boundary condition on the flowing part. The 
solution to be given here is obtained by an inverse method and is exact in the 
sense that no approximating linearization or perturbation procedure is utilized 
to obtain the solution. 

2. The governing equations 
For steady two-dimensional flow of an inviscid, incompressible, density- 

stratified fluid in a gravitational field, with the gravity force acting in the nega- 
tive z-direction, the equations of motion are 

in which x and z are Cartesian co-ordinates, u and w are the corresponding velocity 
components, p is the density, p is the pressure, and g the gravitational sccelera- 
tion. Assuming no diffusion, the density is constant along a streamline, or 

u-+w-= aP aP 0, 
ax az 

and the equation of continuity for an incompressible fluid is 

au aw 
ax a Z  
-+-= 0. 

(3) 

(4) 

Instead of introducing directly a stream function @ at this stage, we can cast 
the above system of equations into a more convenient form by introducing an 
associated flow field (indicated by a prime) through the following transformation 
due to Yih (1  958): 

where po is a reference density. With this transformation, and using (3), equations 



Stratified flow into a line sink 53 7 

From equation (8 ) ,  it  follows that there exists a stream function for the associ- 
ated flow, $', such that 

a@' w' =-. all.' u' = -__ 
az ' i3X 

From equation (3) and the transformation (5), it  is obvious that density is still 
constant along a streamline in the associated flow field. Hence p = p($') .  There- 
fore, integration of (6) and ( 7 )  along a streamline shows that Bernoulli's equation 
is still valid along a streamline. 

The equations of motion, (6) and ( 7 ) ,  can now be combined into one equation 
governing $', dH dp 

poV2@' = 7 - gz ~ 

d@ a@" 

where 

is the Bernoulli sum and is a function of $' only. Writing P($') for dH/d$', we 
have 

P o W + g Z @ i  = P ( f ) .  (9) 

This equation was originally obtained by Yih (1958). It possesses a form which is 
more suitable for further studies than the equation governing the stream 
function $ of the actual flow field, first obtained by Long (1953), 

It is easy to show that Long's equation can be simplified to (9) by Yih's trans- 
formation written in the form 

It has been shown by Yih (1958) that, if the fluid originates from a large reser- 
voir, where the velocity is zero and flows into the channel horizontally, the 
associated flow is irrotational far upstream. If we restrict our attention to a linear 
density stratification far upstream, equation (9) can be rendered exactly linear 
if u' is a positive constant A far upstream. For then, far upstream, 

$' = - Az,  (11) 

and if also the density stratification is linear, 

P ( - W , Z )  = Po(l-PZ),  P = (Po-P1)/Pod, 

where po is the density at bottom of channel, p1 the density at top of channel, 
and d is the total depth of the channel. Then, using ( l l ) ,  (9) becomes 

V2$' + k$' = - Akz,  
where k = gP/A2. 

Equation (12) can be made dimensionless by defining 
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The dimensionless form of (12) is then 

where F = A(gpd2)-* ( 1 4 4  

is the modified Froude number. Equation (14) is the equation to be solved, sub- 
ject to the boundary conditions to be considered in the next section. 

3. The boundary conditions 

the horizontal bottom of the channel, the boundary conditions are 
With 5 measured horizontally from the sink and 7 measured vertically from 

Y = O  f o r C < O ,  ~ = 0 ,  (15) 

Y = - q  for t = - c o ,  O < 7 < h h , ,  (16) 

Y =-h ,  for E =  0, 0 < 7 < b,  (17) 

where h, = d,/d is the dimensionless depth of the flow region far upstream, and 
b is the point where the dividing streamline meets the line 5 = 0 (figure 1). Along 
the dividing streamline, Y = - hl, Bernoulli’s equation must be satisfied, which 
in non-dimensional form is (rs) + rg) 2) + II + ( pst) 7 = const., 

where II = p/poA2 is the dimensionless pressure, which is given by the hydro- 
static pressure of the stable stagnant fluid, and ps is the density along the stream- 
line. 

From (18) some conditions regarding the velocity along the dividing streamline 
for a stable flow configuration can be derived. Physically these conditions are 
equivalent to saying that the density of the stagnant fluid must never increase 
Upwards, and that in the neighbourhood of the streamline its density must be 
less than or equal to the density along the streamline. Thus, differentiation of 
(18) with respect to a dimensionless distance s measured along the streamline 
yields 

where f 2  = (a’P’/aE)2 + (aY/aq)2. But, since the pressure distribution in the 
stagnant zone is hydrostatic, 

where p’ is the density in the stagnant zone, or 

ap = -prgaz, 

= - (PtSd/P0A2) d7,  

so that 

and 
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which upon further differentiation with respect to 7 yields 

Now dv/ds is negative in the geometry considered here and dp'ldy is negative for 
a statically stable stratification. Thus, from (19) and ( Z O ) ,  it  follows that, for a 
stable flow configuration, the square of the velocity must be monotonically 
increasing and d2 (&qr2)ldy2 must be negative or zero along the dividing stream- 
line. It then follows that the dividing streamline must meet the line ( = 0 
tangentially, for otherwise a stagnation point will result, making the flow 
unstable. 

For the inverse method of solution of this investigation, the above conditions 
are utilized to produce a posteriori a stable stratification, as will be seen in the 
next section. It is to be noted that only the density of the fluid in the stagnant 
wedge between the dividing streamline and the horizontal tangent to the dividing 
streamline far upstream is of importance here. The density of the stagnant 
fluid above this region does not affect the problem. 

In order that the solution may represent a physically realistic situation, the 
density of the stagnant wedge must be a constant. This is because, at the initiation 
of the flow, the layer of fluid above the dividing streamline is required to shift 
slightly to fill the wedge region. Furthermore, if the density profile far upstream 
is to be preserved, the density in the stagnant wedge must not only be constant 
but also equal the density along the dividing streamline. For a stagnant zone 
with constant density pa, equation (18) gives 

Therefore, when pa = p A  ($y+ = 1. 

From this equation, the equation of motion and the kinematic boundary 
conditions, and with d = d,, it  is clear that F is a constant for all separated flows 
and that the velocity profiles are similar, a result which has been noted by Yih 
(1964). This can be more easily seen if one observes that all the flow patterns are 
determined for one value of P by virtue of the fact that the non-dimensionalizing 
is based on the depth of the discharging layer, 

4. Method of solution 
An inverse method will be used to solve the system given by equations (14) to 

(18). The method is to introduce a distribution of sinks g(7) on l =  0. In  this way 
the flow field is still continuous everywhere, but there is one streamline which 
divides the flow into two regions, one part flowing completely into the original 
sink and the other into the sink distribution that has been introduced. This new 
problem can be stated as follows: 
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in which Y is assumed to be of the form 

'F = rY ,+( l - r )Y , ,  (24) 

where r represents the percentage of the total flow field that flows into the original 
sink, and Y, represents the flow into the original sink, satisfying the following 
boundary conditions: 

Y l=O for - o o < c < O ,  y = O ,  (26) 

Y , = - y  for c = - o o ,  0 6 7 < 1 ;  ( 2 7 )  

'Y, represents the flow into the sink distribution, satisfying the following 
boundary conditions ; 

Y,=-1 for - - o o < c < O ,  q =  1, (28) 

Y2=O for - o o < t < O ,  q = O ,  (29) 

Y,=-7 for (=-a, O < 7 < 1 ,  (30) 

Y!, = g(7) for 6 = 0, b < y < l ,  (31) 

Y2 = 0 for 6 = 0, O < v < b .  (32) 

The solution Y exhibits a dividing streamline, along which velocity can be 
calculated, and therefore the pressure distribution can be computed. Now, if 
the upper region, namely the part that flows into the fictitious sink distribution 
introduced on < = 0, is replaced by a stagnant layer of fluid of a stable stratifica- 
tion, and if the static pressure produced by the stagnant layer is equal to the 
pressure computed before, then this is a solution to the original boundary-value 
problem. 

The inverse method consists of the suitable choice of the sink distribution 
such that the velocity along the dividing streamline satisfies the conditions 
that 4'2 be monotonically increasing and dz(&q'2)/d72 = 0 along it (i.e. q ' 2  is 
linear in 7 along it). For, when these conditions are satisfied, a unique constant 
density of the stagnant wedge is determined by virtue of equation (21). 

Returning to the solution of Y, and Y, and after some simple calculations, we 
find that 

" 2  
Y 1 -  - - 7 -  C -ee"nfsinnnq, (33) n=lnn 

where = n2+ - F-2. (34) 

For Y,, it  is necessary to choose the form of g(7). A sink distribution of uniform 
strength from 7 = b to 7 = 1 is assumed. The particular choice of a sink distribu- 
tion is not really important here. This is analogous to the problem of Rankine 
bodies, where different singularity distributions can give the same solution for 
the external flow. Thus, the point here is to find a sink distribution that will give 
a Y that satisfies the boundary conditions discussed earlier. A specific choice 
therefore does not restrict the class of solutions. 



StratiJied $ow into a line sink 541 

It is then found that 

n=l \I - o /  
Finally 

(35) 

( n=l nn n=l 1 - b  nn 
) (L)'sin nnb ean 6 sin nny. ~ 

O0 2r 
Y = - 7 -  C -eancsinnny+(l-r) 2 

(36) 

The series and its differentiated series converge uniformly for all values of 6 < 0 
and 0 < 7 6 1. The dimensionless velocity components of the associated flow 
field are given by - aY/aq and aY/aE. Thus, for any assumed value of r ,  b, F ,  
the velocity along the dividing streamline can be calculated. From this a graph 
of (at2) against 7 is plotted to see whether a straight line is obtained, for when 
(q'2) is linear in 7 then the dynamic boundary condition along the dividing 
streamline is satisfied by virtue of equation (21). The detailed calculations in- 
volved a trial-and-error process, involving variations, of r ,  b, and F ,  and were done 
with the aid of an IBM 7090 computer. The final choice was made on the straight 
line that had the smallest slope. A line of zero slope indicates ps = p A  from 
equation (21). Any slope away from zero contributes an error as discussed 
and estimated in fj 5 below. Hence, the line with smallest slope is chosen. Were 
it not for this consideration, there would be an infinite class of essentially dif- 
ferent flows. However, with this restriction, the indeterminacy is removed. 
Setting d = d,, we have thus obtained the solution. By virtue of the similarity 
of all velocity profiles, one velocity profile suffices for the whole class of solutions. 

5. Results and discussion 
The solution found is for F = 0.345, r = 0.51, b = 0.14, and figure 2 (a)  shows 

that (q'2) varies linearly with 7 and that it has a slope of ( -  0.9). Therefore from 
equation (21) we have 

@,-PA) = 0*9F2 ( P o - P h  

or (P, - P A )  = O.l(Pn - PJ (37) 

which shows that (p,-p,) Q (po-ps). The error involved from the non-zero 
slope of (q'2) versus 7 is consequently small, and the Froude number obtained 
herein, i.e. F = 0.345, is indeed the unique Froude number that is being sought. 
Figure 2(b) shows the flow pattern into a sink together with the fictitious sink 
distribution, and figure (3) shows the flow profile for all separated flows. The flow 
pattern in figure (3) of the separated flow compares rather well with the photo- 
graph taken by Debler (1959) in his experiment. That the number foundhere 
is a reasonable figure of the unique Froude number can be seen by the following 
consideration. For F slightly bigger than n-l, Yih's solution (1958) shows a 
large eddy which is nearly horizontal, resulting in return flow to infinity. These 
eddies are, moreover, unstable. This indicates that a flow with discontinuity in 
the flow field, as given here, is relevant, the flowing part possessing a Froude 
number of magnitude somewhat greater than n-l (as indeed found here). The 
result produced with discontinuity in the flow field is then the desired solution. 
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Experimental values of Debler (1959) indicate that the Froude number for all 
separated flows lies in the neighbourhood of 0.28. The discrepancy with the 
number obtained here is actually superficial rather than real. This is because of 
the fact that in the experimental measurements the effect of viscosity tends to 
make the depth of the stagnant zone much smaller, so that for the same discharge 

m h -- 2.0 
Y 

1.0 

3'0 
, 2  - / [(w] = -0.9(7-0.51) - 
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FIGURE 2. (a) Graph of (q'2) versus 71 along the dividing streamline. ( b )  Flow 

pattern into a sink together with the fictitious sink distribution. 
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FIGURE 3. Flow pattern into a sink with stagnant zone. P = 0.354. 

the measured d, is bigger in the case with viscosity than if viscosity is completely 
absent. Also, the presence of the boundary layer at  the bottiom of the channel 
in the experimental case increases the observed depth of the flowing zone. 
Furthermore, the side-wall effect also tends to  reduce the actual discharge 
compared with the theoretical discharge. Since the error in the depth of the 
flowing zone enters as a squared term, the experimental values when suitably 
corrected are in agreement with the results obtained here. 
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This work is based on the first part of a study on the phenomenon of blocking 
in stratified flows, submitted by the author (1963) as a dissertation in partial 
fulfilment of the requirements for the degree of Doctor of Philosophy in the 
University of Michigan. The author wishes to express his indebtedness to Pro- 
fessor Chia-Shun Yih for suggesting the topic and the method of solution. The 
work was partially supported by the National Science Foundation. The author 
also wishes to thank the Institute of Science and Technology of the University 
of Michigan for granting a predoctoral fellowship and the Babcock and Wilcox 
Company for a scholarship during his graduate work at the University. Some 
additional calculations were done under the sponsorship of the U.S. Public 
Health Service, Grant No. WP-00428, at the California Institute of Technology 
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